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The effect of nonlocal phenomena occurring with the motion of inertial particles 
on the rate of mass transfer of the dispersed phase is studied on the basis of a 
closed expression constructed for the probability density function determining 
the transport of these particles in a turbulent nonuniform flow. 

The main types of models are currently used to determine the intensity of pulsative 
motion in turbulent nonuniform flows. The first type is based on the hypothesis of local 
equilibrium, when the intensity of turbulent transport at a given point in space is determined 
by the fluctuational and averaged characteristics of the turbulent flow at this point. The 
local-equilibrium approximation is valid when the characteristic three-dimensional scale 
of turbulence is smaller than the scale of measurement of the turbulent field's averaged 
parameters. Models of the second type, based on nonlocal transport, are used to describe 
pulsative transfer in essentially nonuniform turbulent flows. Here, the turbulence scale 
is comparable to the characteristic scales of the flow itself. In this case, the rate of 
turbulent transport at a given point in space depends integrally on the flow characteristics 
in the neighborhood of this point [1-3]. 

The spatial scale of turbulence is proportional to the time scale of the turbulent pulsa- 
tions. In the case of the motion of a dust-laden turbulent flow, the time scale of the turbulent 
pulsations of the disperse phase of fine particles - the dynamic relaxation time of which 
is shorter than the turbulence time scale - coincides with the characteristic time of turbulent 
pulsation of the carrier flow [4]. The rate of pulsative motion of the disperse phase at 
a certain point of the flow depends on the pulsative and averaged characteristics of the 
carrier phase at the given point. Here, the validity of the local and nonlocal model for 
calculation of the rate of turbulent transport of the carrier phase is determined by 
the ratio of the scales of the flow itself. For intertial particles, whose dynam- 
ic relaxation time exceeds the time scale of the turbulent pulsations of the 
fluid phase, the lifetime of the turbulent pulsations of the disperse phase is deter- 
mined by the dynamic relaxation of the particles. The spatial scale of the pulsations of 
the disperse phase Lp = To I/2 may significantly exceed the characteristic scales of the car- 
rier flow. The rate of pulsative motion of the disperse phase at a given point of the flow 
depends on the intensity of the turbulent pulsations of the particles in a neighborhood with 
dimensions on the order of Lp and its center at the chosen point. In this case, regardless 
of the method used to describe fluctuational transport of the carrier phase (local or non- 
local), the turbulent transport of the dispersed impurity can be studied only within the 
framework of nonlocal models. 

The manifestation of nonlocal effects in nonuniform turbulent flows is important to 
consider. In contrast to the fluctuations of the velocity of the fluid phase, the intensity 
of the pulsative motion of a flow of inertial particles in the fluid does not vanish on the 
walls of the channel in which the flow takes place. Intensive turbulent motion of the parti- 
cles in the wall region results in effective mass transfer of the impurity (deposition of 
particles) and transfer of momentum (averaged velocity slip of the phases) to the walls. 
Semiempirical descriptions of inertial transfer of the pulsative energy of the particles 
to the walls are based on different modifications of the model of the inertial path of parti- 
cles [5-7]. Within the framework of this model, the intensity of the pulsative motion of 
an impurity on the wall of a channel is equated to the turbulence energy of the particles 
in the flow at the distance Lp from the wall. 
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Along with nonl0cal effects which arise in the motion of inertial particles in turbulent 
flows, calculation of the fluctuational characteristics of the disperse phase requires con- 
sideration of the effect of intersection of the trajectories of the particles and fluid moles 
due to the averaged velocity slip of the phases. 

Using the approximation of isotropic turbulence, investigators studied nonlocal trans- 
port and the particle-trajectory intersection effect by both theoretical [4, 8-13] and experi- 
mental [14-16] means. It should be noted that the nonlocal effects in this case were due 
to the fact that the scale of particle pulsations Lp was greater than the characteristic 
size of the small-scale eddies which form an energy-containing turbulent mole. In [8, 9], 
turbulent pulsations of the velocity of the carrier phase were modeled by a Gaussian random 
field and it was assumed that the Lagrangians of the pulsations of particle velocity con- 
stituted a normal random process. The authors of [8, 9] found self-consistent expressions 
for the square of the fluctuations of particle velocity in a Lagrangian representation and 
the particles' eddy diffusion coefficient. These expressions consider both the different 
degrees of involvement of particles in pulsative motion associated with fine-scale turbulence 
and the reduction in turbulent diffusion of the particles due to intersection of the trajec- 
tories. Proceeding within the framework of a renormalized perturbation theory, the author 
of [i0] studied the intensity of pulsative particle motion in an Eulerian approximation. 
With the use of different approximations of the autocorrelation function for pulsations of 
the velocity of the carrier phase along the particle trajectories, the studies [4, 11-13] 
examined the effect of particle inertia and averaged phase slip on the fluctuational charac- 
teristics of the turbulent motion of a dispersed impurity in an approximation in which the 
carrier flow was assumed to be locally isotropic. Calculations of the turbulent dispersion 
of particles in a mixing field were performed in [14] on the basis of a system of equations 
for the second moments of the velocity pulsations of noninertial particles with averaged 
phase slip. 

Here, with the assumption that the field of turbulent fluctuations of the carrier phase 
is Gaussian in character, we find closed expressions for the density function for the trans- 
port of one or two inertial particles in space. We study the effect of particle inertia and 
average phase slip on the intensity of turbulent pulsations and eddy diffusion coefficient 
of particles in the case of uniform and nonuniform turbulence. 

i. The equation of motion of a single particle located in a turbulent flow in a body- 
force field and undergoing Brownian motion has the form 

dVvi = l _ ( ( U i ( R p ( l ) ,  t ) )  + u i t R p ( t ) ,  l )@Wi-}- f i (Rp( t ) ,  t ) - -Vpi ) ,  (1 )  
dt "~ 

dRvi _ Vvl, 
dt 

where the autocorrelaton function for the Brownian pulsations of particle velocity is written 
as follows : 

( f~ (xa, ta) fj (x> t~) ) = 6ij6 (x~ - -  x2) 6 (6 - -  t2) Do. (2 )  

Assuming the existence of Gaussian turbulence fields representing the fluctuations of 
carrier-phase velocity and the velocity of the Brownian displacements, we obtain an expres- 
sion for the particles' eddy diffusion coefficient [17] 

t __l  1 
D f i : x f f l j q - S d x ~ . o f d t x [ 1 - - e x p (  t 7 ) ]  x (3 )  

)< < U i (X, t) Uj (Xl, tl) 8 (X 1 - -  Rp (/1))) �9 

We a s sume  t h a t  t h e  t u r b u l e n t  m o t i o n  o f  t h e  p a r t i c l e s  i s  due  t o  f l u c t u a t i o n s  o f  v i s c o u s  
d r a g  and  B r o w n i a n  o s c i l l a t i o n s .  We u s e  t h e  e q u a t i o n  o f  m o t i o n  o f  a s i n g l e  p a r t i c l e  (1 )  t o  
find an expression for calculating the rate of pulsative motion of the disperse phase 

aij ( N ( x ,  t)> = ( 6 ( x - - R p ( t ) ) v p i ( t ) v v j ( t ) )  -- 

1 ~ [ t - - 6 "  
-- D~ ( N ) - } - - - 4 7 S d x l l d x ~ S d l l e X P o  ~ ~- ~) X (4 )  
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• ~ c l t 2 e x p ( - - ! - - / 2 ) < u i ( x l ,  tl)u,(x2, t 2 ) •  ~ ( X l - - R p ( t l ) ) ~ ( x 2 - - R p ( t 2 ) ) ~ ( x - - R p ( ~ ) ) >  , 
0 T 

where <N(x, t)> = <6(X--Rp(t))> is the density function associated with finding a particle 
at the point x at the moment of time t. 

It follows from Eqs. (3) and (4) that, in order to calculate the rate of pulsative mo- 
tion (fluctuation velocity) and eddy diffusion coefficient of the particles, it is necessary 
to sum the carrier-phase fluctuation velocities calculated for those random trajectories 
of discrete particles that lead from points xl and x 2 at the moments of time t I and t 2 to 
point x at the moment of time t. To perform this summation, we introduce a density function 
which gives the probability of the transfer of a single particle from point xl, tl to point 
x, t: Go.(x, t[ xi, tl). The integrands in (3) and (4) take the form 

< ui (x, t) ui (x~, t0 ~ (xa- -  Rp (h)) > = < u~ (x, t) uj (x~, t0 Go (x, tlx~, t l )  > , 

< U i  (Xl, tl)/s (X2~' t2) ~ ( X l  - -  R i o  (ll)) ~ (X2 - -  Rp (ls)) 6 (x - -  Rio ([)) > -= (5 )  

= < N > < ui (xl, t~) uj (x2, t~) Go (x, tl x~, tO Go (x, tl x2, t2) > �9 

To calculate the function G0(x, t[ x~, tl), we will examine tile more general function 
Go I (x, V, t[ xb Vb tl)- The latter is the density function for the transfer of particles 
in the phase space from the point x,, VI to the point x, V during the time t - t I. Following 
an approach similar to [i0] and using the equation of motion of a single particle (i), we 
obtain an expression for Go I without allowance for Brownian fluctuations of particle velocity: 

Gt~(x, v, t Ixl, Vl, t l ) = f ( x - -  

- -  (t - - t l )  w - -  (t - -  h) < u - -  
tt 

- -  - -  - -  ds exp 

u(R~(s), s ) / ,  v = v - -  < >< V 
l 

Xl + �9 (v -- vO -- 

t 

S • 

t-=s),~ 
X 

(6)  

It is evident from (6) that the displacement of a particle in space is composed of the 
inertial transport (a term proportional to the dynamic relaxation time of the particles), 
displacement of the particle with an averaged relative velocity due to the body force, and 
displacement of the particle together with the fluid. The velocity of a fluid particle is 
calculated on the basis of the trajectory of a solid particle [the last two terms in the 
argument of the first 6-function in (6)]. We will use RfP(t - t l) to represent the displace- 
ment of the fluid particle. Then we can write Eqs. (5) in the form 

< u~ (x, t) u~ (x~, q) Go (x, t[ x~, t3 > = ( 7 )  

= < ui(x, t ) a ~ ( x ~ - - R ~ ( t - - h ) ,  t0Gl(X, tlx~, tO>,  

< U[ (Xl, tl) /.~j (X2, t~) Go (x, tl x~, h) Go (x, tlxz, t~) > = 

= < .~ (x~ - ~ f  ( t -  tO, tO . j  (x~ - ~ ( t -  t~), t~) x 
�9 i 

X al(x,  t[Xl, tl) GI(X , fiX2, t2)>, 

/, 

R; ( t - -  t~) = (t - -  t.O < u > + .f d s ,  (R~ (s), s), 
t h 

x;, = xh + Rt; (t - -  th), k = 1, 2. 

( 8 )  

Here, the function Gl(x, t I x~, t k) is the density function for the transfer of a particle 
from the point x~ to the point x during the time t - t k as a result of its inertial motion 
and the displacement with the mean relative velocity of the phases. 
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It is evident from Eqs. (7) and (8) that the statistical properties of the velocity 
fluctuations of the carrier phase on the particle paths are given by the fluctuation charac- 
teristics of the fluid particles whose trajectories intersect the trajectory of an isolated 
particle. We make use of the method of independent averaging to find the two-point correla- 
tion of the fluid-phase velocity fluctuations along the particle trajectories in Eqs. (7). 
This method is widely used in the study of the turbulent diffusion of passive and inertial 
particles [8-10, 18-21]. As a result, we obtain the following expressions for fluctuation 
intensity and the eddy diffusion coefficient of the disperse phase: 

o'~jlx) = D~ + + S dx~ ,[ dx~ '[ dtlexp ~ t • 
o (9) 

t 
X .[ dt~ exp (-- -- 

0 

t-~ t2)((/~i (X;, tl) Uj(X;, t2))) < 6=(x, t[x;, t,;x~, t2)>, 

• <<re(x, t)uj(xl, t3>> < O~(x, tlxl,  6 ) > ,  

<O~(x, fix;, 6; x;, tO> = <6~(x, tjx;, tOO~(x, ttx~, tO>,  

where the two-point correlation of fluid velocity fluctuations along the particle trajectory 
has the form 

~ u ,  (x;, t3 m tx~, t~)~ = < m (x; - nf  ( t -  6), q) uj (x; - Rf ( t -  tO, t~) >. ( lO)  
For low-inertia particles whose dynamic relaxation time is shorter than the integral 

macroscopic time scale of the turbulence T L (T L is the Lagrangian of the macroscale of the 
turbulent pulsations), the trajectory of a discrete particle is close to the trajectory of 
a fluid mole, and Eqs. (8) and (i0) describe the Lagrangian correlation of the fluid particles. 
For inertial particles, �9 ~ T L. Due to the weak correlation between the displacements of 
the solid and fluid particles, Eqs. (8) and (i0) represent the Eulerian two-point correlation 
of the velocity fluctuations of the carrier phase. Meanwhile, the scales of this correlation 
function are determined in a coordinate system which moves with the average velocity of the 
carrier flow. Thus, with an increase in the inertia of the particles, there is a transition 
from Lagrangian to Eulerian carrier-phase characteristics on the particle trajectory. This 
conclusion is consistent with results obtained earlier [22]. 

It should be noted that a local-equilibrium approximation to calculate the fluctuation 
characteristics of the particles is obtained from Eqs. (9) with <GI> ~ ~(x - x1') and <G2> ~ 
6 (x - x ; ) 6  (x - x ~ ) :  

1 t - -  t.1. - -  als (x) = __D~ + ~ .  d6 exp _ dt~ exp X 

• <<u~(x, tDuj(x, t~)>>, 
f 

D~j (x) = D O + .[ dt l  <<ui (x, t) u j  (x, t l)>>. 
o 

With statistically steady turbulence, the two-point correlation function of the carrier- 
phase velocity fluctuations has the form 

< u~(x~, 6) uj(x~, t~) > =/~j(x~, x~; [x~--xd, t6 --t.,A) < u~u~ >. 

The transfer density function in the space G I (x, t[ x~, t k) corresponds to the density 
function for the transfer of a particle having the velocity vk at point x~ at the moment of 
time t k to the point x by the moment t: G I ' (x, t I x~, v~, tk). The expression for G I' is 
obtained from (6) by integrating the function G O ' over v in the phase space: 
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G;(x,  tlx~, v~, t h ) = 6 ( x - - x ' ~ - - ' ~ v , ~ ( 1 - - e x p ( - - - -  
\ \ \ ,  

t 

~h "r / 

The transfer density functions in the space <G~> and <G~> in Eqs. 
from the following relations: 

(11) 

(9)  are determined 

< 61 (x, tl x;~, t~) > = ~ dv,~ < G[ (x, tlxL v~, t~) > < ,v (v,~, t~) >, 

< ~o- (x, tt x[, t~; x~, to-) > = S dv~ ~ dye. < G; (x, ~1 xl, v~, h) x 

• o~ (x, tl x~, vo., to.)> < q~(v~, h; v~, to.)>, 

(12) 

where <~i> and <~2> are the density functions for the velocities of a single particle and 
a pair of particles at the moments of time t I and t2: 

< % (vk, t~) > = < 6 (v~ - -  vp (t~)) > ,  k = 1, 2, ( 1 3 )  

< % (v~, h; vo., t~) > = < 8 (v~ - -  v~ (h)) ~ (vo- - -  vp (to-)) >. 
To calculate the density functions for the particle velocities, we need to determine 

the Lagrangian autocorrelation function of the particle-velocity fluctuations 

( < vp~ (6) vpj (to.) > = x 2 f dsl exp 
o x 

• < u~ (R, (sl), sl) uj (Rp (s~), s2) > = -}- exp �9 • 

• (%,(t2)%jlt2)> + e x p (  6--to-)<~ vv,(q) v, j( tx)>- 

- -exp ( tl--t" ) < vpi(tl-to.)vpi`ll-to-) ] '  

<%i(t)vp,(t)) = 1 ids[exp(--+)--exp( 2t--s )] 
0 T 

• < u~ (Rp ~t), t) ttj (Rp (t - -  s), t - -  s) > .  

to- --T SO- ) 

X 

(14) 

We will use the method of averaging expressions containing a d-function to obtain a 
closed representation of the function <Oa >. This method was described in [23]. We model 
particle fluctuation velocity in (13)-(14) as a random normal process. Since the effects 
of nonlocality are manifest for inertial particles �9 > TL, in examining the particles' rela- 
tive motion we will limit ourselves to terms of the order (TL/z) 2. As a result, we find: 

(v.-- v~y ] < (D--2 (vl, h; v2, t2) ) = (2~rA2) -3/2 exp 2A~ • 

• (vii + v2i) ~ ] 
2 8 < v.~ (to) > 

A z-- 11 A~ A~ <vd~(t~)) l - - e x p  ~ 2 2 ' = - -  + < v. i (~)  >, 
i=l 

3 
B~ = II < v~ (tc) >, t~ = (h + &)/2, ~ = h - -  t~. 

i ~ l  

(15) 

The density function for the velocities of a single particle <~z> is obtained from (15) 
with ~ = 0(t I = t2) , Vl = V2, and has the form of a Maxwell distribution. It is evident 
from (15) that the mean-square relative velocity of the particles [the parameter A i in (15)] 
is composed of the relative velocity of inertial motion and the fluctuation velocity acquired 
by a particle during the time $. 
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Following the method in [23] and restricting ourselves to an inertial-particle approxi- 
mation, we can use (11)-(15) to obtain an expression, accurate to within terms of the order 
(TL/~) 2, for the density function <Ga> giving the probability of the transfer of two parti- 
cles from points x~ and x~ to point x during the times t - t z and t - t2, respectively: 

< G(x,  it x;, h; x;, t~)> = G ( x - - x ,  t--to; u ~)= 

= (2aCZ) -3/2 exp [ - -  ( x , -  X~--2Lp~W~ ( t -  t~)) z ] x 

x(2~x2AZ)-3/2exp[ (Y~-- W~)z ] ' 2l~ 

C z = H Lpi, Lpi = (v,i(t~) > 1 - -  exp + 
i=1 

+ < v ~. ( t -  4) > 1 G = -~A~, x - 
x; + X~ 

~, , , ~ ,  v =  x ; - x ~ .  

(16) 

The density function for the probability of the transfer of a single particle from point 
x; to the point x during the time t - t z follows from (16) with x I = x~, t I = t2: 

( G1 (X, t I Xl ,  [1) > = G1 (Y1, ~1) = (2~ C 2)  - 3 / 2  X 
(17) • (YI~ --  Wi~*)z ] 2L~ ' Y : x - -  x ; ,  ~1 ~ t - -  t 1. 

I t  i s  e v i d e n t  from Eqs. (16) - (17)  t h a t  the  t r a n s f e r  d e n s i t y  f u n c t i o n s  depend on the  
Lagrangian c o r r e l a t i o n s  of the  p a r t i c l e - v e l o c i t y  f l u c t u a t i o n s .  The r a t e  of  f l u c t u a t i o n  of a 
p a r t i c l e  <v~(t~)> a t  the  moment of  t ime t c cor responds  to the  r a t e  of f l u c t u a t i o n  of the 
d i s p e r s e  phase a t  the  p o i n t  X 

< G (4) > = ~ .  (x). 

For inertial particles �9 > t L, the characteristic spatial scale of change in pulsative 
motion exceeds the scale of the turbulent moles at point x In this case, the squares of 
the fluctuation velocities of the particles <Vpi2($)> and <vpia(t - tc)> are determined from 
Eq. (14). In the latter, the correlation function for carrier-phase velocity fluctuations 
is calculated at point X in the locally equilibrium approximation: 

( v~i (t') > : 5[ ds exp -- -- exp • 

• Ru(X, X; 0, s)< u~ >, t ' = ~ ,  t - - t~ .  

(18) 

The transfer density function <G=> (16) is the product of two factors. The first is 
the probability of a transfer occurring along the mean trajectory, beginning at the point 
X= ( x; + x~)/2 at the moment of time t c = (t I + t2)/2 and arriving at the point x at the 
moment of time t. The second factor is the density function for the distance between two 
points x~ and x~ from which the particles arrive at point x The square of the relative 
distance between the points x~ and x~ is calculated from the formula (xli' - Xzi' = Yi): 

( 1 9 )  

For inertial particles �9 > T L, we find the following from (18) and (19) at ~ z T E (T E 
is the time-dependent Eulerian macroscale of turbulence measured in a coordinate system mov- 
ing with the mean velocity of the flow): 

< Y~z(~) > = W ~ 2  + 2 t ' d s (~ - - s )Ru (X ,  X; O, s),m W~T~q-L~,  ~ T e ,  
6 

(20) 
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where L E is the Eulerian scale of the energy moles. Thus, the square of the maximum distance 
between points x I and x" 2 from which particles arrive at point x is determined by the phase- 
slip velocity and the characteristic dimension of the energy moles of the fluid phase. 

Taking into account the statistically steady character of the velocity fluctuations 
of the carrier phase, we rewrite Eq. (9) for the square of the velocity fluctuations of the 
discrete phase in the form 

17 '17 2 �9 

o (21) 

x d~/?~j X -4- --if-, X - -  -- ,1u I~1 O~(x-- X, t--t~; Y, ~). 
_ 2 ( t _ ~ c )  2 / 

It is evident from (21) that the maximum value of the integrand in (21) in the variable 
t c lies in the region t - t c - ~. It is also apparent that at t c = t, the integral in (21) 
is equal to zero. Choosing the value of the function G 2 at the point t - t c 
tion of the integral in the variable tc, we obtain the following (t m ~): 

ois(x)= Do + <uiul)  
T % 

y 
•  X §  X--- 

The eddy diffusion coefficient for the 

= �9 for evalua- 

i d~exp - - V  ]dXj'dYx 
"o 

Y2 ; IY[, ~)O2(x--X, •; Y, ~). 

particles is calculated from the formula 

(22) 

D~/(x) = xcr u -+- < ui u1 

• R~j(x, x - -  

> 

Y; IYI, ~)G1 (Y, ~). 

X 
(23) 

It follows from Eqs. (16) and (22)-(23) that the fluctuation velocities of the disperse 
phase are calculated by a self-consistent method. This is in keeping with the results ob- 
tained in [8, 9]. It is also evident from (22) and (23) that the fluctuation characteristics 
of the disperse phase depend on the degree of involvement of the particles in the pulsative 
motion associated with the small-scale turbulence that forms the internal structure of the 
turbulent moles. The fluctuation characteristics are also seen to depend on the character 
of the change in the energy of the turbulent pulsations of the carrier phase in space. 

2. To illustrate these relations, we will examine the unidimensional case in a uniform 
turbulence approximation. The expressions for the fluctuation velocity and the eddy diffu- 
sion coefficient (22), (23) take the form 

o=--D~ ~ --(uz) i d ~ e x p ( - - + ) ~ d Y R o ( ] Y , ,  ~)• 
T T 0 --~ 

(24) 
• (2~I~)-U2 exp [- (r-- ~)~ ] 

j' L 

i [ ] Dp=Do+ (uZ> o d~_.S dYRo([YI, ~)(2~/~)-'/2 exp (Y-- W~)Z21~ ' (25) 

--exp "-- - Ro(0, s . (26) 

We assign the two-point autocorrelation function for the fluctuations of gas velocity 
on the particle trajectory in the form 

Ro (Y, ~) = RI(Y/L'p) R2 (~/T~), 
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where Lp' and Tp' are the spatial and temporal macroscales of the fluid pulsations on the 
particle trajectory. The macroscales of the pulsations of the gas on the particle trajec- 
tory are connected with the Lagrangian and Eulerian macroscales of the pulsations of the 
turbulent field of the carrier phase: 

T~ = (o + 1)TL/2 + (I --re)Tel2, 

L~ = (m + 1) LL/2 + (1 - -  o) LE/2, (27)  

O = ( I - - a ) / ( 1  @~) ,  ~ = ( Y ~ ( T p )  > 1/2/LL. 

For inertial particles z > T L in the case when there is an appreciable mean phase-slip 
velocity WT L >> LL, a m 1 and m + -i. In this case, we find from (27) that the scales of 
the fluctuation field of the carrier phase on the particle trajectory coincide with the 
Eulerian macroscales measured in a coordinate system moving with the mean velocity of the 
flow. For low-inertia particles T ~ T L with a negligible mean phase-slip velocity WT L << 
L L, a + 0, m + i, and the turbulent field around a particle has Lagrangian characteristics. 

We will calculate the eddy diffusion coefficient of the particles with a stepped ap- 
proximation of the autocorrelation function for the gas-velocity fluctuations near a particle: 

Ro (Y, ~) = 0 (L;  - - I Y [ )  0 (Tp --I~l) ,  

lp = lp (Tv), p = TL/Te  = L z / L e ,  ~' = T'o/Te = L'~/Le, 

= '~ /Te ,  f = 1 - - e x p ( - - k 3 ' / ~ ) ,  w = W/ ( u z > l/2, 

oq = 1 -6 ~', 0% = l - - w ,  a = L'p/(-l/~tp), 

lp/Le = ~ [ ( 1  + o ' / (  u 2 } )i/2, 

(28) 

Dp - -  Do < u ~ ) 1/2 { 
D I - -  2~W .~ '  [% err (a~l)  - -  % err (a~2)] 

+ 2-V~LElP [ e x p ( _ a 2 a ~ ) _ e x p ( _ a Z ~ ) ] }  , ( 2 9 )  

where the parameter ~ describes the relation between the Lagrangian and Eulerian macroscales 
of the fluctuation field of the carrier phase. 

It should be noted that the well-known formulas which consider the effect of intersection 
of the trajectories on the eddy diffusion coefficient of the particles follow from (25) with 
the corresponding approximations of the function R0(Y, ~). 

When ~p + 0 and R0(Y, ~) = exp (-y2/LE2 - $2/TL2), we obtain the Csanady formula [13] 

(D v - - D o ) / D  s = (1 + WZpZ/ ( uZ> )-1/2. ( 3 0 )  

With an exponential approximation R0(Y, ~) = exp(-[YI/Lg - I$I/TL), we find [4, 12] 

(Dp - Do)/D t = (1 + ~ W / (  u z > ,/2)-1. ( 3 1 )  

Figure 1 compares the results of calculation of the eddy diffusion coefficient of the 
particles from Eqs. (29)-(31) in relation to phase slip velocity. The calculations were 
performed with ~ = 0.8 [13]. It is evident that an increase in particle inertia (curves 
4 and 5) causes a reduction in the eddy diffusion coefficient of the coarse particles. This 
can be attributed to the lesser involvement of an inertial impurity in the small-scale, high- 
frequency pulsative motion of the small turbulent eddies which go into the structure of a 
turbulent mole. With an increase in the relative velocity of the phases, the value of the 
ratio W/<u2> I/2 becomes the main factor which determines the level of turbulent diffusion 
of the dispersed impurity. It should be noted that with a decrease in the Lagrangian scales 
of the turbulent field compared to the Eulerian scales (6 ~ i), the particles' eddy diffusion 
coefficient exceeds the eddy diffusion coefficient of the fluid phase. A similar result 
was observed in [9, i0, 22]. 

Figure 2 illustrates the change in the fluctuation energy of the particles in relation 
to inertial parameters and phase slip velocity. The calculations were performed with Eq. 
(24) for autocorrelation function (29). It follows from the figure that a reduction in the 
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Fig. i. Effect of mean phase-slip velocity on the eddy diffu- 
sion coefficient of the particles: points) experimental data 
[14]; i) calculation with Eq. (30); 2) with Eq. (29) at s = 0; 
3) with Eq. (31); 4) with Eq. (29) at dp = 15 pm; 5) with Eq. 
(29), dp = i00 pm. Dp, m2/sec; W, m/sec. 

Fig. 2. Effect of phase slip velocity and particle inertia on 
particle fluctuation velocity: I) W/<u2> I/2 = 0; 2) 5; 3) I0; 
4) 20. 

Fig. 3. Rate of particle deposition on a channel wall (u+ = 
0.34 m/sec) in relation to particle size (points show experi- 
mental data from [25]). dp, pm. 

Fig. 4. Effect of particle inertia on deposition rate (points 
show experimental data from [26]): i) Re = i04; 2) 5"10 ~. 

fluctuation energy of the impurity is greater, the greater the inertia of the particles and 
the relative phase-slip velocity. 

3. Let us evaluate the validity of the expressions obtained here to determine the fluc- 
tuation velocity of the discrete phase (22) in the case of nonuniform turbulence occurring 
in the wall region of a channel on a stabilized section of the flow. The literature contains 
little empirical data on particle fluctuation velocity near channel wails, while there are 
data on the rate of particle deposition on walls during the turbulent flow of a gas suspension 
[25-27]. It follows from the results in [17] that for an absolutely absorbing channel wall, 
the rate of particle deposition is connected with the intensity of the transverse pulsations 
of the disperse phase by the following relation: 

(2/~) l/~ o 1/2 (0) = V~, ( 3 2 )  

w h e r e  o(O)  i s  t h e  s q u a r e  o f  t h e  t r a n s v e r s e  p u l s a t i o n s  o f  p a r t i c l e  v e l o c i t y  on t h e  w a l l ;  V W i s  
t h e  r a t e  o f  p a r t i c l e  d e p o s i t i o n .  
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We approximate the autocorrelaton function for pulsations of gas velocity in the trans- 
verse direction by means of the expression 

\ 2 / 

< u ~ (y) > = bu~_ [1 - -  exp (-- y+/A+)] z, y+ = yu+/~, 
( 3 3 )  

where A+ = 30; b - 1 [24]; u+ is dynamic velocity; R ~ is assigned in the form (28). We evalu- 
ate the spatial and temporal macroscales of the turbulent pulsations of the gas for the core 
of the flow: L E = ~R, T E = LE/U+, ~ = 0, I. 

Inserting (2) and (33) into (22) and integrating, we find an expression for the fluctua- 
tion velocity of the disperse phase on the channel wall. At W = 0, this expression has the 
form 

~(0) b [ /Lp2+ ~ e r f c (  Lp+ ) 
u~_ - - - - 2 [ a  1 - - 2 e x p  ~ 2A~_} , ' V ' 2 A +  + 

+ exp k,---~+ erfc , L.+ = 
A+ v ' 

= , Lp = al ) ), 

erfc (x) = 1 - -  err (x), a~ ~ 0.5. 

(34) 

With $ = 0.3 and b = 0.8, we used Eqs. (32) and (33) to calculate rates of particle 
deposition on the surface. Figure 3 compares the results of calculation of particle deposi- 
tion rate in the flow of a dust-laden gas past a plate. Figure 4 illustrates the effect 
of the dimensionless relaxation time of the particles on deposition rate. An increase in 
the inertia of the particles (~+ < 102 ) leads to intensive penetration of the dispersed im- 
purity into the viscous sublayer and an increase in the fluctuation energy of the impurity 
on the walls. Coarser particles (T+ > 102 ) are drawn into pulsative motion in the flow core 
to a lesser extent, which results in a reduction in the turbulence energy of the impurity 
over the entire cross section of the channel. 

NOTATION 

T, dynamic relaxation time of particles; oij , second moments of particle-velocity fluctua- 
tions; <Ui(x , t)>, ui(x, t), mean and fluctuation components of carrier-flow velocity; Wi, 
mean velocity of phase slip caused by body forces; fi(x, t), random field describing Browni- 
an fluctuations of particle velocity; Vpi(t) , Vpi(t) , actual and fluctuation velocities 
of a single solid particle; Do, coefficient of Brownian diffusion of particles; Dp, coefficient 
of eddy diffusion of particles; 6(x/, Dirac delta function; <Vi(x, t)>, averaged component 
of particle velocity; RfP, coordinate of a fluid particle on the trajectory of a discrete 
particle; <GI>, <G2>, transfer density function for one and two particles in space; Dr, coef- 
ficient of eddy diffusion of the carrier phase; 8(x), Heaviside function; erf (x) = 2f~ x 
Y0 ~ dt exp (--t2), standard error function; LE, TE, Eulerian temporal and spatial macroscales; 
dp, particle diameter; Re = 2RWm/V, Reynolds number of flow; R, channel radius; u+, dynamic 
velocity; T+ = ~u+2/v, particle relaxation time in dynamic variables; y+ = yu+/v, distance 
from channel wall in dynamic variables; VW+ = VW/U +. 
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HEAT RELEASE IN A GAS FLOW AT THE JUNCTION OF CHANNELS 

WITH DIFFERENT SURFACE ROUGHNESSES 

O. E. Aleksandrov, S. P. Obraz, V. D. Seleznev, 
B. T. Porodnov, and A. G. Flyagin 

UDC 533.6.011 

A measurement is made of the thermal polarization which develops in a gas flow 
in a nonuniform channel due to the dependence of the mechano-caloric heat flux 
on surface roughness. 

In accordance with nonequilibrium thermodynamics, in a compound channel or V-shaped 
pipe with parts having different surface roughnesses, a heat flux should develop on the wall 
Jq in the region of the junction of dissimilar parts when an isothermal gas flows through 
tKe pipe [i]. This effect is related to the accommodation pumping effect observed by Hobson 
[2]. The latter phenomenon involves the formation of a longitudinal flow of gas particles 
when the temperatures of the walls at the junction of dissimilar channels deviate from the 
temperatures of their free ends. Measurement of the heat flux Jq is of scientific interest, 
since it makes it possible to prove hypotheses regarding the nonequilibrium thermodynamics 
of discontinuous systems and determine the value of the kinetic coefficient Lq~, which char- 
acterizes the release of heat in the region of the joint of dissimilar parts o2 a compound 
channel. 

The authors of [3] proposed a theoretical model to calculate the above-mentioned effect 
for small Knudsen numbers. The method is based on the solution of problems of continuum 
mechanics with the use of slip boundary conditions. 

We write as follows the temperature and pressure fields in the flow of a gas in a long 
(L ~ R) isothermal nonuniform channel when the conditions correspond to the viscous slip 

S. M. Kirov Ural Polytechnic Institute, Sverdlovsk. Translated from Inzhenerno-Fizi- 
cheskii Zhurnal, Vol. 59, No. 3, pp. 466-470, September, 1990. Original article submitted 
November 27, 1989. 

0022-0841/90/5903-1167512.50 �9 1991 Plenum Publishing Corporation 1167 


